
Numerical Gecko Eclipse Plug-in: Guidelines for Future 

Development 
 

 

 

General 
The Numerical Gecko Eclipse Plug-in (NG) is a fully working implementation of a pre-

existing open source Java application, called NumericalChameleon (NC), designed as 

an Eclipse IDE view and fully integrated into the Eclipse development environment. 

While staying true to the source application, NG omits some of the features found in 

NC, changes some of the others, and expands on some of the rest. As this is an open 

source project, built to function in a constantly updating and dynamic environment, 

it, too, may be modified in the future and taken to new and exciting directions. This 

document will highlight some of the possible expansions and/or changes that can be 

made to this project. 

 
Before attempting to modify NG, the developer should familiarize himself with the 

Eclipse IDE and Plug-in Development Environment (PDE), with NG and its 

specification documents (found at the project homepage) and, preferably, with the 

parent application, NC. 

 

Additions and Changes to the Data Model 

As detailed in the specification document, the data model includes the core 

conversion engine, the original conversion objects (called clusters) and new 
conversion modules, and is essentially NC’s core, without the GUI elements, and 

wrapped in a new API. Changes to this model may include re-enabling some of the 
dropped features from NC or adding new conversion modules. 

• Re-enabling dropped features: When developing NG, we had made an 

effort not to change any of the original NC code or resources. While we were 

not able to use NC’s core binaries, due to technical difficulties (open issues 

with Eclipse’s PDE and external jars), we were able to limit our changes to the 

original sources to a very small degree. This, combined with the fact that we 

were not able to use NC’s main class, lead to some conversion categories (like 

international time zones) not being supported in NG, and to some of the new 
feature names in NG (such as the translation conversion category) not being 

localized along with the rest of the interface. Any developer looking to add 

some of these features, should study the jonelo.NumericalChameleon.Main 

class, its use of the ISO-8859-1 resource bundle, and the use of other 

resource bundles under the “data” folder (which can be found inside the plug-

in’s main jar file – NCPlugin.jar). The best solution, of course, will be the 

modification of these classes by their original author. 

• Adding new conversion modules: NC used objects called clusters to 

handle various forms of conversions. All of these are inherited from a 

common parent class – jonelo.NumericalChameleon.Clusters.ClusterObject. 



When we came around to adding a new conversion module, Translation, we 

followed the same guidelines and created a new cluster object – 

org.numerical_gecko.clusters.ClusterTranslation (using a new package, so as 

not to disrupt NC’s original directory structure). Developers wishing to add 

new conversion modules should study this class, as well as its use in 

org.numerical_gecko.Controller and the cluster generation API in 

org.numerical_gecko.ClusterGenerator. The translation conversion module is 

also a fine example of using web services within NG and could be used for 

further study in that area. 

Additions and Changes to the Data View 

As detailed in the specification document, the data view includes NG’s user interface 

(written in SWT to comply with Eclipse’s requirements) and the IDE integration. Both 

of these components may be extended or modified, using existing Eclipse extension 

points, adding new user preferences, changing the look and feel of the plug-in and 

more. 

• Modifying the GUI: The entire GUI creation for NG is contained within 

org.numerical_gecko.views.SampleView, including some variations on the 

basic view (such as the “Thin” skin, which radically alters the appearance of 

the plugin). Developers wishing to modify the appearance of the plug-in or to 

add new features (including appropriate GUI elements), should study this 

class and modify it as needed. 

• New or changed user preferences: NG adds a new preference page to the 

Eclipse workspace, utilizing an extension point found in 

org.eclipse.ui.preferencePages. The user preferences are stored in the plug-

in’s built-in preference store, and are initialized and accessed (mainly) 
through the plug-in’s main class, org.numerical_gecko.NumericalGecko. The 

preferences are then used, as needed, throughout the plug-in’s classes 

(org.numerical_gecko.Controller and org.numerical_gecko.views.SampleView, 

for example). The preference page itself is created in 

org.numerical_gecko.preferences.GeckoPreferencePage. Any developer who 

wants to alter or add to the use of preferences may want to study these 

classes and add to them. 
• Adding to the IDE integration: NG adds a new command to the context 

menu of Eclipse’s text editors, which sends the highlighted text to the NG’s 
source field. The command was added through the extension point in 

org.eclipse.ui.popupMenus and is contained in the class 

org.numerical_gecko.actions.SendToConvertor. Another command that sends 

converted values back to the active editor can be found in 

org.numerical_gecko.views.SampleView. These are basic examples of IDE 
integration. Future developers may wish to add similar commands or go in 

different directions, such as writing new refactoring tools that use NG 
(‘search-convert-replace’ for example). 

Other changes 

Changes to NG are limited only by the developer’s imagination and skills, and are 

encouraged. However, before adding new features, the developers should consider 

whether these apply merely to the NG plug-in or whether they could be applied to 

the parent application, NC. If so, it is strongly recommended to contribute to NC 



first, and then use the updated NC as the basis to any modified version of NG. For 

example, when we first set out to convert NC to NG, we contributed a Hebrew 

translation to the NC’s interface, and then used the newly updated version of NC, 

including that new interface, as our starting point. That way, both NC’s core user 

base and our new user base could benefit from the new feature, and enjoy the magic 

of open source. 

 


